

ADVANCED GCE MATHEMATICS Further Pure Mathematics 2

4726

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Friday 9 January 2009 Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 8 pages. Any blank pages are indicated.

- 1 (i) Write down and simplify the first three terms of the Maclaurin series for e^{2x} . [2]
 - (ii) Hence show that the Maclaurin series for

$$\ln(e^{2x} + e^{-2x})$$

begins $\ln a + bx^2$, where a and b are constants to be found.

- 2 It is given that α is the only real root of the equation $x^5 + 2x 28 = 0$ and that $1.8 < \alpha < 2$.
 - (i) The iteration $x_{n+1} = \sqrt[5]{28 2x_n}$, with $x_1 = 1.9$, is to be used to find α . Find the values of x_2, x_3 and x_4 , giving the answers correct to 7 decimal places. [3]

[4]

[2]

(ii) The error e_n is defined by $e_n = \alpha - x_n$. Given that $\alpha = 1.8915749$, correct to 7 decimal places, evaluate $\frac{e_3}{e_2}$ and $\frac{e_4}{e_3}$. Comment on these values in relation to the gradient of the curve with equation $y = \sqrt[5]{28 - 2x}$ at $x = \alpha$. [3]

3 (i) Prove that the derivative of
$$\sin^{-1} x$$
 is $\frac{1}{\sqrt{1-x^2}}$. [3]

(ii) Given that

$$\sin^{-1} 2x + \sin^{-1} y = \frac{1}{2}\pi,$$

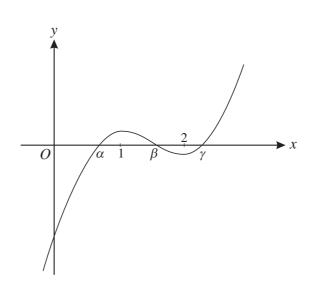
find the exact value of $\frac{dy}{dx}$ when $x = \frac{1}{4}$. [4]

4 (i) By means of a suitable substitution, show that

$$\int \frac{x^2}{\sqrt{x^2 - 1}} \, \mathrm{d}x$$

can be transformed to $\int \cosh^2 \theta \, d\theta$.

(ii) Hence show that
$$\int \frac{x^2}{\sqrt{x^2 - 1}} \, \mathrm{d}x = \frac{1}{2}x\sqrt{x^2 - 1} + \frac{1}{2}\cosh^{-1}x + c.$$
 [4]



3

The diagram shows the curve with equation y = f(x), where

$$f(x) = 2x^3 - 9x^2 + 12x - 4.36.$$

The curve has turning points at x = 1 and x = 2 and crosses the *x*-axis at $x = \alpha$, $x = \beta$ and $x = \gamma$, where $0 < \alpha < \beta < \gamma$.

- (i) The Newton-Raphson method is to be used to find the roots of the equation f(x) = 0, with $x_1 = k$.
 - (a) To which root, if any, would successive approximations converge in each of the cases k < 0 and k = 1?
 - (b) What happens if 1 < k < 2? [2]
- (ii) Sketch the curve with equation $y^2 = f(x)$. State the coordinates of the points where the curve crosses the *x*-axis and the coordinates of any turning points. [4]
- 6 (i) Using the definitions of $\cosh x$ and $\sinh x$ in terms of e^x and e^{-x} , show that

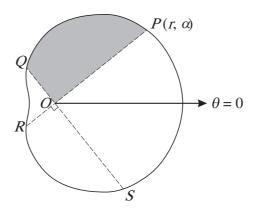
$$1 + 2\sinh^2 x \equiv \cosh 2x.$$
 [3]

(ii) Solve the equation

$$\cosh 2x - 5\sinh x = 4,$$

giving your answers in logarithmic form.

[5]



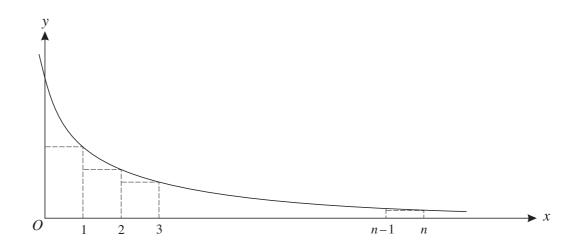
4

The diagram shows the curve with equation, in polar coordinates,

$$r = 3 + 2\cos\theta$$
, for $0 \le \theta < 2\pi$.

The points *P*, *Q*, *R* and *S* on the curve are such that the straight lines *POR* and *QOS* are perpendicular, where *O* is the pole. The point *P* has polar coordinates (r, α) .

- (i) Show that OP + OQ + OR + OS = k, where k is a constant to be found. [3]
- (ii) Given that $\alpha = \frac{1}{4}\pi$, find the exact area bounded by the curve and the lines *OP* and *OQ* (shaded in the diagram). [5]



5

The diagram shows the curve with equation $y = \frac{1}{x+1}$. A set of *n* rectangles of unit width is drawn, starting at x = 0 and ending at x = n, where *n* is an integer.

(i) By considering the areas of these rectangles, explain why

$$\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n+1} < \ln(n+1).$$
 [5]

(ii) By considering the areas of another set of rectangles, show that

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} > \ln(n+1).$$
 [2]

(iii) Hence show that

$$\ln(n+1) + \frac{1}{n+1} < \sum_{r=1}^{n+1} \frac{1}{r} < \ln(n+1) + 1.$$
 [2]

(iv) State, with a reason, whether
$$\sum_{r=1}^{\infty} \frac{1}{r}$$
 is convergent. [2]

9 A curve has equation

$$y = \frac{4x - 3a}{2(x^2 + a^2)}$$

where *a* is a positive constant.

- (i) Explain why the curve has no asymptotes parallel to the *y*-axis. [2]
- (ii) Find, in terms of *a*, the set of values of *y* for which there are no points on the curve. [5]

(iii) Find the exact value of
$$\int_{a}^{2a} \frac{4x - 3a}{2(x^2 + a^2)} dx$$
, showing that it is independent of *a*. [5]

cao

M1 A1

4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$
		Get $1 + 2x + 2x^2$

(ii)
$$\ln((1+2x+2x^2))$$
 M1
+ $(1-2x+2x^2)$) =
 $\ln(2+4x^2)$ = A1 $\sqrt{1}$
 $\ln 2 + \ln(1+2x^2)$ M1
 $\ln 2 + 2x^2$ A1

2 (i)
$$x_2 = 1.8913115$$
 B
 $x_3 = 1.8915831$ B
 $x_4 = 1.8915746$ B

(ii) $e_3/e_2 = -0.031(1)$ N

$$e_4/e_3 = -0.036(5)$$
 A
State f'(α) $\approx e_3/e_2 \approx e_4/e_3$ B

3 (i) Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +

(ii) Get
$$2/(\sqrt{1-4x^2})$$
 M
+ $1/(\sqrt{1-y^2}) dy/dx = 0$

Find $y = \sqrt{3}/2$ M1Get $-2\sqrt{3}/3$ A1

	SC Reasonable attempt at $f'(0)$ and f' Get $1+2x+2x^2$	(0) M1 ao A1
M1	Attempt to sub for e^{2x} and e^{-2x}	
A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f '(x) and f'' One correct Attempt f(0), f '(0) and f''(0) Get cao	
B1 B1√ B1	x_2 correct; allow answers which roun For any other from their working For all three correct	d
M1 A1 B1√	Subtraction and division on their values; allow \pm Or answers which round to -0.031 and -0.03' Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f'	
M1 A1 B1	Implicit diff. to $dy/dx = \pm(1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values	
M1 A1	Attempt implicit diff. and chain rule; e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$	allow
M1 A1	Method leading to y AEEF; from their a above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ Attempt to diff. as above Replace x in reasonable dy/dx and attempt to tidy Get result above	M1

Reasonable 3 term attempt e.g. allow $2x^2/2$

Mark Scheme

B1 B1

B1

B1

B1

B1

B1

M1 A1

M1

M1

A1

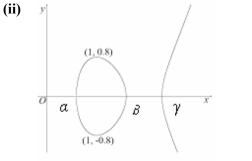
M1 A1

A1

4	(i)	Let $x=\cosh \theta$ such that $dx = \sinh \theta d\theta$ Clearly use $\cosh^2 - \sinh^2 = 1$	M1 A1
	(ii)	Replace $\cosh^2 \theta$ Attempt to integrate their expression	M1 M1
		Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta$ (+ <i>c</i>) Clearly replace for <i>x</i> to A.G.	A1 B1

5 (i) (a) State
$$(x=) \alpha$$
 B1
None of roots B1

(b) Impossible to say	
All roots can be derived	



6 (i) Correct definitions used
Attempt at
$$(e^{x}-e^{-x})^{2}/4 + 1$$

Clearly derive A.G.

(ii) Form a quadratic in sinh x Attempt to solve Get sinh $x = -\frac{1}{2}$ or 3 Use correct ln expression Get $\ln(-\frac{1}{2}+\frac{\sqrt{5}}{2})$ and $\ln(3+\sqrt{10})$

7 (i)
$$OP=3+2\cos \alpha$$

 $OQ=3+2\cos(\frac{1}{2}\pi+\alpha)$ M1
 $=3-2\sin \alpha$
Similarly $OR=3-2\cos \alpha$ M1

$$OS=3 + 2\sin \alpha$$

Sum = 12

(ii) Correct formula with attempt at r^2 M1 Square *r* correctly A1 Attempt to replace $\cos^2\theta$ with M1 $a(\cos 2\theta \pm 1)$ Integrate their expression A1 $\sqrt{}$ Get $^{11\pi}/_4 - 1$ A1

Clearly derive A.G.	
Allow $a (\cosh 2\theta \pm 1)$ Allow $b \sinh 2\theta \pm a\theta$	
Condone no +cM1SC Use expo. def"; three termsM1Attempt to integrateM1Get $\frac{1}{8}(e^{2\theta}-e^{-2\theta}) + \frac{1}{2}\theta(+c)$ A1Clearly replace for x to A.G.B1	
No explanation needed	
Some discussion of values close to 1 or 2 or central leading to correct conclusion	
Correct <i>x</i> for <i>y</i> =0; allow 0.591, 1.59, 2.31	
Turning at (1,0.8) and/or (1,-0.8)	
Meets x-axis at 90°	
Symmetry in <i>x</i> -axis; allow	
Allow $(e^{x}+e^{-x})^{2}+1$; allow /2	
Factors or formula	
On their answer(s) seen once	
Any other unsimplified value	
Attempt at simplification of at least two correct expressions	
cao	
Need not be expanded, but three terms if it is	
Need three terms	

cao

4726

Mark Scheme

8	(i)	Area = $\int 1/(x+1) dx$ Use limits to ln(<i>n</i> +1) Compare area under curve to areas	B1 B1 B1
		of rectangles Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$	M1
		Clear detail to A.G.	A1
	(ii)	Show or explain areas of rectangles above curve	M1
		Areas of rectangles (as above) > area under curve	A1
	(iii)	Add 1 to both sides in (i) to make $\sum_{i=1}^{n} \frac{1}{r}$	B1
		Add $\frac{1}{(n+1)}$ to both sides in (ii) to make $\sum \binom{1}{r}$	B1
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1
9	(i)	Require denom. = 0 Explain why denom. $\neq 0$	B1 B1
	(ii)	Set up quadratic in x Get $2yx^2$ - $4x$ + $(2a^2y+3a) = 0$ Use $b^2 \ge 4ac$ for real x	M1 A1 M1
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1

(iii)	Split into two separate integrals	M1
	Get $k \ln(x^2 + a^2)$	A1
	Get $k_1 \tan^{-1}(x/a)$	A1
	Use limits and attempt to simplify	M1
	Get $\ln 2.5 - 1.5 \tan^{-1}2 + 3\pi/8$	
		A1

Include or imply correct limits
Justify inequality
Sum seen or implied as 1 x y values
Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$
First and last heights seen or implied; A.G.
Must be clear addition
Must be clear addition; A.G.
Allow not convergent
Attempt to solve, explain always > 0 etc.
Produce quadratic inequality in y from their quad.; allow use of = or < Factors or formula Justified from graph SC Attempt diff. by quot./product rule M1 Solve $dy/dx = 0$ for two values of x M1

Solve dy/dx = 0 for two values of x M1 Get x=2a and x=-a/2 A1 Attempt to find two y values M1 Get correct inequalities (graph used to justify them) A1

Or $p \ln(2x^2+2a^2)$ k_1 not involving a

AEEF

ALLI	
SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta d\theta$	M1
Reduce to $\int p \tan \theta - p_1 \mathrm{d}\theta$	A1
(ignore limits here)	
Integrate to $p\ln(\sec\theta) - p_1\theta$	A1
Use limits (old or new) and	
attempt to simplify	M1
Get answer above	A1

4726